Peter H Brown Clinical Psychologist

Psychology News & Resources

The Science Of “Baby Brain”

Source credit: ScienceDaily (Dec. 21, 2011)

We know a lot about the links between a pregnant mother’s health, behavior, and moods and her baby’s cognitive and psychological development once it is born. But how does pregnancy change a mother’s brain? “Pregnancy is a critical period for central nervous system development in mothers,” says psychologist Laura M. Glynn of Chapman University. “Yet we know virtually nothing about it.”

Glynn and her colleague Curt A. Sandman, of University of the California Irvine, are doing something about that. Their review of the literature in Current Directions in Psychological Science, a journal published by the Association for Psychological Science, discusses the theories and findings that are starting to fill what Glynn calls “a significant gap in our understanding of this critical stage of most women’s lives.”

At no other time in a woman’s life does she experience such massive hormonal fluctuations as during pregnancy. Research suggests that the reproductive hormones may ready a woman’s brain for the demands of motherhood — helping her becomes less rattled by stress and more attuned to her baby’s needs. Although the hypothesis remains untested, Glynn surmises this might be why moms wake up when the baby stirs while dads snore on. Other studies confirm the truth in a common complaint of pregnant women: “Mommy Brain,” or impaired memory before and after birth. “There may be a cost” of these reproduction-related cognitive and emotional changes, says Glynn, “but the benefit is a more sensitive, effective mother.”

The article reviews research that refines earlier findings on the effects of the prenatal environment on the baby. For instance, evidence is accumulating to show that it’s not prenatal adversity on its own — say, maternal malnourishment or depression — that presents risks for a baby. Congruity between life in utero and life on the outside may matter more. A fetus whose mother is malnourished adapts to scarcity and will cope better with a dearth of food once it’s born — but could become obese if it eats normally. Timing is critical too: maternal anxiety early in gestation takes a toll on the baby’s cognitive development; the same high levels of stress hormones late in pregnancy enhance it.

Just as Mom permanently affects her fetus, new science suggests that the fetus does the same for Mom. Fetal movement, even when the mother is unaware of it, raises her heart rate and her skin conductivity, signals of emotion — and perhaps of pre-natal preparation for mother-child bonding. Fetal cells pass through the placenta into the mother’s bloodstream. “It’s exciting to think about whether those cells are attracted to certain regions in the brain” that may be involved in optimizing maternal behavior, says Glynn.

Glynn cautions that most research on the maternal brain has been conducted with rodents, whose pregnancies differ enormously from women’s; more research on human mothers is needed. But she is optimistic that a more comprehensive picture of the persisting brain changes wrought by pregnancy will yield interventions to help at-risk mothers do better by their babies and themselves.

 

Enhanced by Zemanta

June 11, 2012 Posted by | brain, Cognition, Health Psychology, mood, Parenting, research, stress | , , , , , , , , , | 1 Comment

Now That I’ve Got Your Attention: What Gets Your Attention?

Source: Association for Psychological Science.

Once we learn the relationship between a cue and its consequences—say, the sound of a bell and the appearance of the white ice cream truck bearing our favorite chocolate cone—do we turn our attention to that bell whenever we hear it? Or do we tuck the information away and marshal our resources to learning other, novel cues—a recorded jingle, or a blue truck?

Psychologists observing “attentional allocation” now agree that the answer is both, and they have arrived at two principles to describe the phenomena. The “predictive” principle says we search for meaningful—important—cues amid the “noise” of our environments. The “uncertainty” principle says we pay most attention to unfamiliar or unpredictable cues, which may yield useful information or surprise us with pleasant or perilous consequences.

Animal studies have supplied evidence for both, and research on humans has showed how predictiveness operates, but not uncertainty. “There was a clear gap in the research,” says Oren Griffiths, a research fellow at the University of New South Wales, in Australia. So he, along with Ameika M. Johnson and Chris J. Mitchell, set out to demonstrate the uncertainty principle in humans.

“We showed that people will pay more attention to a stimulus or a cue if its status as a predictor is unreliable,” he says. The study will be published in an upcoming issue of Psychological Science, a journal of the Association for Psychological Science.

The researchers investigated what is called “negative transfer”—a cognitive process by which a learned association between cue and outcome inhibits any further learning about that cue. We think we know what to expect, so we aren’t paying attention when a different outcome shows up—and we learn that new association more slowly than if the cue or outcome were unpredictable. Negative transfer is a good example of the uncertainty principle at work.

Participants were divided into three groups, and administered the “allergist test.” They observed “Mrs. X” receiving a small piece of fruit—say, apple. Using a scroll bar they predicted her allergic reaction, from none to critical. They then learned that her reaction to the apple was “mild.” Later, when Mrs. X ate the apple, she had a severe reaction which participants also had to learn to predict.

The critical question was how quickly people learned about the severe reaction. Unsurprisingly, if apple was only ever paired with a severe reaction, learning was fast. But what about if apple had previously been shown to be dangerous (i.e. produce a mild allergic reaction)? In this case, learning about the new severe reaction was slow. This is termed the “negative transfer” effect. This effect did not occur, however, when the initial relationship between apple and allergy was uncertain — if, say, apple was sometimes safe to eat. Under these circumstances, the later association between apple and severe allergic reaction was learned rapidly.

Why? “They didn’t know what to expect from the cue, so they had to pay more attention to it,” says Griffiths. “That’s because of the uncertainty principle.”

Enhanced by Zemanta

June 22, 2011 Posted by | brain, Cognition, Identity, research | , , , , , , , | Leave a comment