Peter H Brown Clinical Psychologist

Psychology News & Resources

Emotional Intelligence: Learning To Roll With The Punches

It’s a hot-buzz topic that covers everything from improving workplace performance and successfully climbing the corporate ladder to building the happiest of marriages to ending school bullying. But what exactly is Emotional Intelligence (EI)? If we lack it, can we learn it? And how do we know if our EI is high or low? Is it only high if we’re really, really nice?

Three scholarly researchers – including University of Cincinnati Psychology Professor Gerry Matthews – delved into the science of EI and published “What We Know About Emotional Intelligence: How it Affects Learning, Work, Relationships, and Our Mental Health.”

Published by MIT Press (2009), the book was recently awarded the American Publishers Award for Professional and Scholarly Excellence – the PROSE Awards – in the biological and life sciences category of biomedicine and neuroscience. The book, co-authored by Matthews, Moshe Zeidner (University of Haifa) and Richard D. Roberts (Center for New Constructs, Educational Testing Service, Princeton, N.J.), was also on display at the UC Libraries’ Authors, Editors and Composers Reception and Program from 3:30-5 p.m., Thursday, April 22, in the Russell C. Myers Alumni Center.

MIT Press promotions describe EI as the “ability to perceive, regulate and communicate emotions – to understand emotions in ourselves and others.” Workplaces want to test for it to find the most EI-talented employees, and consultants are touting training and EI tests to improve productivity. “In the popular writings, EI tends to be defined very broadly and one can’t proceed with scientific research with such a vague and broad definition,” Matthews says.

Matthews’ research interests have explored how stress, mood and coping ability can affect performance on tests, in the workplace and on the highway. He adds that amid the grim economy, even the people who have jobs are feeling high levels of stress in the workplace and are feeling more challenged by workplace demands and concerns about job security. In general terms, those who can roll with the punches – with a shrug and a smile – may have higher Emotional Intelligence.

Click image to read reviews

Then again, “The intimate association of personality and emotion sets a trap for researchers interested in Emotional Intelligence,” writes Matthews. “It might seem that happy, calm states of mind should be seen as the person imbued with high Emotional Intelligence. However, such emotional tendencies may be no more than a consequence of biases in brain functioning or information-processing routines operating without insight or ‘intelligence.’ Some individuals – in part because of their DNA – are simply fortunate in being prone to pleasant moods, so it follows that emotional states do not alone provide an index of Emotional Intelligence,” Matthews states in the book.

In fact, Matthews says he’s skeptical that people who are better at managing stress hold higher Emotional Intelligence, but as the researchers found as they tried to narrow down the science of Emotional Intelligence, more research is needed. For instance, is someone with higher EI in the workplace more productive, or are they just better at self-promotion and forming positive relationships with co-workers? Matthews says he believes EI appears to be very modestly related to workplace performance, and could turn out to be nothing more than a business fad.

He adds the researchers are also skeptical about all of those EI tests, particularly those self-assessments. After all, people could be rating themselves the way they see themselves or the way they would like to be seen, and not like they actually are.

Currently, authors Matthews and Roberts are researching the testing of EI through video scenarios. The situation judgment test involves watching the videos unfold a challenging situation, and then the video comes to a stop and offers different options for resolving the problem. Matthews is building on his earlier research which explored whether negative moods affected good decision making abilities. “Through the video project, the idea is to see if emotionally intelligent people are better able to make rational decisions under stress,” he says.

The researchers are also examining the link between EI and school social and emotional learning programs.

Source:
Dawn Fuller
University of Cincinnati

Share/Save/Bookmark

Reblog this post [with Zemanta]

May 2, 2010 Posted by | anxiety, Books, Cognition, Health Psychology, Identity, Positive Psychology, research, Resilience | , , , , , , , , , , , | 4 Comments

Brain Training Or Just Brain Straining?: The Benefits Of Brain Exercise Software Are Unclear

You’ve probably heard it before: the brain is a muscle that can be strengthened. It’s an assumption that has spawned a multimillion-dollar computer game industry of electronic brain-teasers and memory games. But in the largest study of such brain games to date, a team of British researchers has found that healthy adults who undertake computer-based “brain-training” do not improve their mental fitness in any significant way.

Read The Original Research Paper (Draft POF)

The study, published online Tuesday by the journal Nature, tracked 11,430 participants through a six-week online study. The participants were divided into three groups: the first group undertook basic reasoning, planning and problem-solving activities (such as choosing the “odd one out” of a group of four objects); the second completed more complex exercises of memory, attention, math and visual-spatial processing, which were designed to mimic popular “brain-training” computer games and programs; and the control group was asked to use the Internet to research answers to trivia questions.

All participants were given a battery of unrelated “benchmark” cognitive-assessment tests before and after the six-week program. These tests, designed to measure overall mental fitness, were adapted from reasoning and memory tests that are commonly used to gauge brain function in patients with brain injury or dementia. All three study groups showed marginal — and identical — improvement on these benchmark exams.

But the improvement had nothing to do with the interim brain-training, says study co-author Jessica Grahn of the Cognition and Brain Sciences Unit in Cambridge. Grahn says the results confirm what she and other neuroscientists have long suspected: people who practice a certain mental task — for instance, remembering a series of numbers in sequence, a popular brain-teaser used by many video games — improve dramatically on that task, but the improvement does not carry over to cognitive function in general. (Indeed, all the study participants improved in the tasks they were given; even the control group got better at looking up answers to obscure questions.) The “practice makes perfect” phenomenon probably explains why the study participants improved on the benchmark exams, says Grahn — they had all had taken it once before. “People who practiced a certain test improved at that test, but improvement does not translate beyond anything other than that specific test,” she says.

The authors believe the study, which was run in conjuction with a BBC television program called “Bang Goes the Theory,” undermines the sometimes outlandish claims of many brain-boosting websites and digital games. According to a past TIME.com article by Anita Hamilton, HAPPYneuron, an example not cited by Grahn, is a $100 Web-based brain-training site that invites visitors to “give the gift of brain fitness” and claims its users saw “16%+ improvement” through exercises such as learning to associate a bird’s song with its species and shooting basketballs through virtual hoops. Hamilton also notes Nintendo’s best-selling Brain Age game, which promises to “give your brain the workout it needs” through exercises like solving math problems and playing rock, paper, scissors on the handheld DS. “The widely held belief that commercially available computerized brain-training programs improve general cognitive function in the wider population lacks empirical support,” the paper concludes.

Click on image to read reviews

Not all neuroscientists agree with that conclusion, however. In 2005, Torkel Klingberg, a professor of cognitive neuroscience at the Karolinska Institute in Sweden, used brain imaging to show that brain-training can alter the number of dopamine receptors in the brain — dopamine is a neurotransmitter involved in learning and other important cognitive functions. Other studies have suggested that brain-training can help improve cognitive function in elderly patients and those in the early stages of Alzheimer’s disease, but the literature is contradictory.

Klingberg has developed a brain-training program called Cogmed Working Memory Training, and owns shares in the company that distributes it. He tells TIME that the Nature study “draws a large conclusion from a single negative finding” and that it is “incorrect to generalize from one specific training study to cognitive training in general.” He also criticizes the design of the study and points to two factors that may have skewed the results.

On average the study volunteers completed 24 training sessions, each about 10 minutes long — for a total of three hours spent on different tasks over six weeks. “The amount of training was low,” says Klingberg. “Ours and others’ research suggests that 8 to 12 hours of training on one specific test is needed to get a [general improvement in cognition].”

Second, he notes that the participants were asked to complete their training by logging onto the BBC Lab UK website from home. “There was no quality control. Asking subjects to sit at home and do tests online, perhaps with the TV on or other distractions around, is likely to result in bad quality of the training and unreliable outcome measures. Noisy data often gives negative findings,” Klingberg says.

Brain-training research has received generous funding in recent years — and not just from computer game companies — as a result of the proven effect of neuroplasticity, the brain’s ability to remodel its nerve connections after experience. The stakes are high. If humans could control that process and bolster cognition, it could have a transformative effect on society, says Nick Bostrom of Oxford University‘s Future of Humanity Institute. “Even a small enhancement in human cognition could have a profound effect,” he says. “There are approximately 10 million scientists in the world. If you could improve their cognition by 1%, the gain would hardly be noticeable in a single individual. But it could be equivalent to instantly creating 100,000 new scientists.”

For now, there is no nifty computer game that will turn you into Einstein, Grahn says. But there are other proven ways to improve cognition, albeit only by small margins. Consistently getting a good night’s sleep, exercising vigorously, eating right and maintaining healthy social activity have all been shown to help maximize a brain’s potential over the long term.

What’s more, says Grahn, neuroscientists and psychologists have yet to even agree on what constitutes high mental aptitude. Some experts argue that physical skill, which stems from neural pathways, should be considered a form of intelligence — so, masterful ballet dancers and basketball players would be considered geniuses.

Jason Allaire, co-director of the Games through Gaming lab at North Carolina State University says the Nature study makes sense; rather than finding a silver bullet for brain enhancement, he says, “it’s really time for researchers to think about a broad or holistic approach that exercises or trains the mind in general in order to start to improve cognition more broadly.”

Or, as Grahn puts it, when it comes to mental fitness, “there are no shortcuts.”

Credit: Time.com

Share/Save/Bookmark

Reblog this post [with Zemanta]

April 23, 2010 Posted by | Age & Ageing, Books, brain, Cognition, Education, Health Psychology, Internet, research | , , , , , , , , , , , , , , | 6 Comments